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SUMMARY

. '\) \ The plastic contact of a rough surface and a hard, smooth flat is analyied by

modeling the rough surface as an isotropic, Gaussian, random process. The appli-
~cability of this model to the contact of two rough surfaces is discussed, and it is
shown that the model is appropriate.

It is not necessary to analyze interactions of asperity pairs, with the attendant
questions of their misalignment, the shape of their caps, etc. Instead, a model in-
volving the interaction of the continuous surfaces is developed, which implicitly takes
“nto account these geometrical factors, as well as allowing for the possibility of the

foalescence of microcontacts as the normal pressure is increased. ‘ . '
Q.vf Approximate relations between the density of finite contact patches their
‘mean area and mean circumference, and the normal pressure/hardness ratio are

- derived. These relations depend not only on the density and height.distribution of
naxima, but also on the shape of the Power Spectral Density of the surface. Many

. surfaces of interest are likely to give rise to multiply-connected contact patches at

* all except very high separations The density of holes appearing within the contact
='patches as well as their area is estimated.
¥ Results are derived for surfaces that may be partitioned into two components,
‘one with a large r.m.s. value and a narrow roughness spectrum, and the other with a
“small r.m.s. value and an arbitrary spectrum. For these surfaces, the density of holes at
‘small separations becomes equal to the density of finite contact patches; the area of

- ) sthe holes remains small, however. It is conjectured that for surfaces that may not

J.

2

U

_be partitioned in this manner, conventional models of contact are inapplicable.
* Specifically, the contact patches are likely to be perforated by holes at all
separations, the hole area being a significant fraction of the contact area. Unit
events such as the contact or collision of asperities also appear to become meaningless

Fcri st

1. INTRODUCTION
In a recent paper' a two-dimensional random process model of a rough
_surface was developed, based on the work of Longuet-Higgins?. This model is used
~in an analysis of the static contact of plastic rough surfaces.

* Present address: Engineering Research Centre, TELCO. Poona, India.
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A literature survey on the plastic contact of rough surfaces’~° shows that
it has been considered necessary to use an asperity-based model of surface topo-
graphy to obtain such statistics as the density of microcontacts and their mean
area. An asperity-based model assumes the rough surface to consist of a mean
plane with independent (i.e., not touching) hills-and valleys randomly distributed on
it; it is usually assumed that the caps of the asperities are spherical.

This asperity model (with its attendant assumptions) is unnecessary, and is
often invalid.

By assuming that the surface is a Gaussian random process, an assumption
increasingly supported by experimental evidence, relationships are obtained between
such statistics as the real area of contact, the density of contacts, their mean area, a
shape factor for the contacts, and the normal pressure. For an isotropic surface,
these relationships depend fairly strongly on the shape of the surface Power Spectral
Density (PSD). In particular, a question of importance is whether or not the
surface roughness can be partitioned into a dominant narrow-band roughness and
a superposed, low-level, roughness. If this cannot be done, i.e., if the surface PSD
is truly broad-band with no dominant (narrow) band of wavelengths, it appears that
conventional descriptions of contact in terms of convex, singly-connected contact
patches are likely to be inapplicable.

An important part of the model of plastic contact proposed here is an
observation of Pullen and Williamson® that when an incremental deformation of the
asperity tips occurs, the incremental plastic volume reappears as a uniform rise in
that part of the surface that is not in contact. However, certain other modes of plastic
deformation could be assumed, including the popular (but wrong) one, that the
plastically deformed volume simply vanishes; the quintessence of these models belng
that the non-contacting surface is not dlstorted

Another important part of the model is another observation of Pullen and
Williamson®, that the apparent normal pressure is not proportional to the fraction
(real area/apparent area). Through analysis and experiment, they demonstrate that -
at high apparent normal pressures the mean pressure on the microcontacts may be
significantly greater than the hardness H without collapse of the asperities. A
specific relation between the pressure and the real area is obtained in ref. 6 and is
used here. Other empirically determined relations could be used in the model without
destroying its validity.

What emerges from the analysis is a picture of plastic contact that explicitly
exhibits the coalescence of many small contacts into fewer large ones as the normal
pressure is increased. The predicted density of contacts is thus significantly lower,
except at low pressures, than would be predicted by an asperity model of contact.
It is shown that at small mean-plane separations, the microcontacts (or contact
patches as they will be termed to make explicit the possibility that they are multiply
- connected) are perforated throughout by holes, the density of these holes being
approximately equal to the density of contact patches. It is also shown that for
most surfaces, the average contact patch is likely to be markedly noncircular in
shape, at all except the lightest loads.

Though the analysis presented here and the attendant conclusions are strictly »
valid only for isotropic, Gaussian surfaces, an examination of the physical phenomena
underlying the conclusions shows that they are likely to be qualitatively correct
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for non-Gaussian surfaces, too.’

Section 2 brleﬂy summarizes the observatlons and conclusions of Pullen and
Williamson®, the main goal being to demonstrate that the plastic contact of a rough
surface and a hard flat at some separation is roughly equivalent (insofar as contact
statistics are concerned) to the intersection of the rough surface and an imaginary
plane at some other “equivalent” separation. It is further shown that the contact of
two rough surfaces is equivalent to the contact of a “composite” rough surface
and a hard flat, and therefore, to the intersection of that composite rough surface
and an imaginary plane.

Section 3 examines in detail the intersection of an isotropic, Gaussian rough
surface, and an imaginary plane, the main goals being to obtain the density of
contact patches, to roughly assess their shape, and to tackle the questlon of
whether or not the contact patches have holes in them.

Section 4 presents a brief example illustrating theory. Finally, an extenswe
discussion of the results of the model and of the assumptions it makes is presented
in Section 5. ’

2. PLASTIC CONTACT OF ROUGH SURFACES

2.1. One rough surface and a hard, smooth flat :

Some recent observations of Pullen and Williamson®, discussed in some detail
by Tallian” are of great use in the development of a random process model of
rough surfaces in plastic contact.

Consider a rough surface contacting a hard, smooth flat, the separation of
the flat and the mean-plane of the rough surface being y. If ¢ be the r.m.s. roughness
of -the surface, the dimensionless separation is y*=y/s. Pullen and Williamson
found in a fascinating experimental study that the volume of metal plastically
deformed during an incremental approach of the surfaces reappears as a uniform
incremental rise in the untouched part of the surface. This mode of deformation
results in the following conceptual model of contact. Assuming the lower mean plane
P; in Fig. 1 to remain fixed (because of the redistribution of plastic volume),
the upper plane P, is lowered until the dimensionless mean-plane separation is
y*. Simultaneously, the entire lower surface rises by an amount u, such that the
volume of the rough surface per unit area eventually lying above the imaginary plane
P, is equal to u. This conceptual model is, in turn equivalent to a model wherein
the rough surface intersects the plane P,, but at an effective dimensionless separation

2§ =y*—ujo,

SURFACE AFTER
/ LOADING

INITIAL
Fig. 1. The plastic contact of a rough surface and a smooth, rigid piane.
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such that .
y* = 2~ 42 erfe(2f/2%) + (2n) exp(—b23?)

Figure 2 shows z§ as a function of y*. Clearly, for a separation y*, the real
area of contact per unit mean-plane area is found from

A=Jw'mﬁMﬁ,
25 (%)

where p(z*) is the height-distribution of the surface. Taking this distribution to
be Gaussian, one obtains

A= Jerfe[z5(y*)/2*] .

Figure 3 shows A as a function of y*.

The normal pressure is not proportional to A4, due to the interaction
between adjacent plastic microcontacts. On the basis of theory and experiment, it
is shown by Pullen and Williamson that a good lower bound for the apparent
normal pressure is obtained by setting

p/H~A/(1—-A).
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Fig. 2. The dimensionless effective separation z§ as a function of the apparent dimensioniess separation y*.

Fig. 3. The fractional real area of contact as a function of the dimensionless separation.
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By combining this equation with Fig. 3, a relation between p*=p/H and the
dimensionless separation y* may be obtained, and is shown in Fig. 4.
Finally, the relation between the effective separation z§ and the dimensionless
pressure p* is shown to be

erfc(z§/2%) = 2p*/(1+p*) .

This relation is shown in Fig. 5.
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g. 4. Relation between the apparent dimensionless separation and the pressure to hardness ratio.

ig. 5. Relation between the effective dimensionless separation and the pressure to hardness ratio.

Using Fig. 5, the effective separation may be determined once the normal
pressure p and the metal hardness H are known.
The preceding model is central to the theory to be developed since it
establishes that one may (at least roughly) consider the contact of a plastic
rough surface and a hard flat to be statistically equivalent to the intersection of
the rough surface and an imaginary plane. This implies that one need not consider
the surface to be distorting during contact; distortion would be virtually impossible
to take into account analytically. On the other hand, an analysis of the intersection
of a rough surface and an imaginary plane is tractable under certain conditions, as
will be shown in Section 3.

2.2. Two rough surfaces
Let z, and z, be the heights of the two surfaces. If y be the separation of
their mean planes, the two surfaces, considered imaginary for the moment, intersect
whenever z, =(z, +z,) >y. The quantity z, defines a “composite” rough surface such
that the contact of the two rough surfaces is equivalent to the contact of the
composite surface and a hard flat at a separation y.

1
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When z, and z, are Gaussian, z, will also be Gaussian. Furthermore, when
z, and z, are uncorrelated, the Power Spectral Density (PSD) of z, will be the
sum of the PSD’s of z; and z,. It is then a straightforward conclusion! that
0?=07+03 Thus, the dimensionless separation for the composite surface is
y*=y/o=y/(c1+d%)* and once this is obtained, the entire analysis of the preceding

section is directly applicable to the present problem, and it follows that the contact of -

two rough surfaces is also equivalent to the intersection of a composite rough surface
and an imaginary plane.

If z, and z, be isotropic, i.e., if their PSD’s have circular symmetry, then
z, will also be isotropic. Furthermore, designating the r.m.s. slope and r.m.s. second
derivative of an arbitrary profile of an isotropic surface by ¢’ and ¢”, it also
-follows! that

(00)* = (01)*+(0%)
(00)* = (07)*+(0%)* .

With this groundwork, a detailed analysis of the intersection of an isotropic,
Gaussian rough surface and an imaginary plane may be made.

and

3. INTERSECTION OF A ROUGH SURFACE AND A PLANE

3.1. Some known statistics of Gaussian rough surfaces

Let the rough surface height be z(x;, x,), where (x;, x,) are Cartesian
coordinates in the mean plane. We first define three parameters: o, the r.m.s. height
of a cross-sectional profile of the surface, ¢, the r.m.s. slope of the proflle and
¢, its r.m.s. second derivative. (In the notatlon of ref. 1, we have o2=my,,
(¢')*=my, (¢"")*=my.) Furthermore, define a dimensionless surface height by

=z/o, (1)

and a parameter o by
B (o_o,//)Z .
@ @

The parameter o is a measure of the breadth of the Power Spectral
Density (PSD) of the surface roughness, i.e., the range of wavelengths encountered
in it. Large values of « indicate a broad PSD; small values, a narrow PSD. For an
isotropic, Gaussian surface?,x > 1.5. Then, the following results hold for an isotropic,
homogeneous, Gaussian surface.

(1) The probability density for the syrface height is given by!

p(z*) = (2m)"* exp(—32*7). | ()

2) The probability density for heights of maxima* (i.e., local maxima) is
y !
given by!

* Equation (4) corrects a typographical error appearing in the first term in the braces on the
right-hand-side of eqn. (50) in ref. 1.

o
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3% [300—3)] ‘
pmax(z*) = m {[ (T:l Z* exp(_clz*)
* 3(5;1)?‘ (1+erf B)(z*2—1) exp(—32*?)
4 (Qn)t [éﬁ] (1+erf7) exp [—ocz*z/Z(oz—l)}} S
where
Cy=0/(20-3),
3 .
b= [2(%—3)} z
”vmd .
B . b .
re [2@—1)(20(—3)] Z ©)
(3) The density of all maxima (# /unit area) is given by
1 0_//')2
-~ (2. 6
Dmax 67'53% (0'/7 ( )

(4) The fraction of mean-plane area corresponding to surface points above a
height z§ is given by '
A(ZE) = j ¥ p(e¥)dz* =1 erfe (z4/2%) . ()
z5
Equation (3) has been used in deriving the final expression.
- (5) The volume of the solid lying above a height z§ (per unit mean-plane
area) is given by

Vt) = o j °° A(z)dz* ®)

3.2. Statistics of theintersection
We now proceed to derive various results regarding the density of finite
contact patches that the surface has in a plane at height z§, parallel to the mean
plane. Each such patch is bounded by one closed contour if it is singly con-
nected, and by many closed contours if it is multiply connected. To determine
the density of finite contacts, we proceed as per Longuet-Higgins?.
On a contour map of the surface, we may assign a direction ¢ to each point.
The sign convention is that for any point, one stands on the contour through
the point, facing uphill; then the local ¢ is the angle between the tangent
vector pointing to the right, and any other fixed line, say the x;-axis. Then? for
any closed curve in the mean plane, the total change in ¢ in one complete
circuit is given by ‘

A¢ = 27 x {No. of maxima + No. of minima—No. of saddle
points enclosed by the closed curve} . 9)
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By letting the curve grow in size indefiﬁitely, Longuet-Higgins shows that for a
homogeneous surface, the following result must hold:

Dmax+Dmin_Dsp=0: (10)

where D,..., Dni, and DSp are the total densities of summits, minima, and saddle

max>
points, respectively.
Now if the surface is Gaussian with zero mean, it is statistically symmetrical
about the mean plane. Thus

Dmax=Dmin' (11)
Combining eqns. (10) and (11), we have
%Dsp =Dmax=Dmin . . ’ (12)

Instead of considering arbitrary curves, we may consider closed contours,
bounding finite contact patches. If the contact patches are singly connected, as in
Fig. 6(a), then clearly, for the contour bounding the patch, A¢=2n. Since all
maxima, minima and saddle points within such a patch also lic above z§, eqn. (9)
may be reduced to "

{No. of maxima + No. of minima — No. of saddle points within
one finite singly-connected path} =1.- ' (13)

,\-/

Fig. 6. Possible contact patch configurations.

Next, we consider a contact patch of the type shown in Fig. 6(b). It is
possible to show that for such a patch, ‘
{No. of (maxima + minima — saddle points) above z%}
+ {No. of holes within the patch} =1. (14)

Suppose all the contact patches were of the type shown in Fig. 6(b),
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(Fig. 6(a) being a particular case). Then, ,vsimplif by counting patches and writing
eqn. (14) for each patch, one arrives at the following result.

do(28) = dmax(28) + dmin (28) — dip (28) + dua(25) . (15)

where d (z¥) is the density of finite contact patches at z§, dy(z¥) is the density of
holes at z§, and dmax, min and d are the densities of maxima, minima and
saddle-points above z§, respectlvely

‘Finally, consider a contact patch such as that shown in Fig. 6(c). Equation
(15) applies even in the presence of such contacts, if each of the little islands
within the holes is counted as a separate contact patch. There is reasonable doubt
that these islands can usefully be interpreted as separate contacts, but the following
analysis leading to the density of contact patches is sufficiently approximate so that
the preceding interpretation makes little quantitative difference. This is particularly
true in view of the radically different qualitative view of the process of contact

)that emerges from the analysis, compared to existing models.

In sum, eqn. (15) will :be used to estimate the density of finite contact
patches at any separation z§. To be specific, a finite contact patch is defined as a
finite area of intersection 1nc1ud1ng all points such that it is’ p0551b1e to travel
from any point within it to any other point within it without crossing a contour
line at z§. These contact patches may be multiply connected, and they very likely

will not be convex.
It is known! that surfaces with a broad-band PSD will have minima above

the mean plane, just as they will have maxima below the mean plane. The presence
of these minima ensures the occurrence of holes. At any height z§, these holes
will ‘occur due to minima lying below z} which are of sufficient depth so that the
corresponding valleys intersect the z§ plane. If one knew something about the
- depths of these valleys, the following approximate analysis would be unnecessary;
such information, however, would be contained only in higher-order autocorrelation
functions or power spectra, and would not be easy to come by, both from the
point of view of obtaining the empirical data, and of interpreting them. We
therefore proceed with our approximate analysis.
For a surface that is symmetric about the mean plane we know that the
density of minima above z§ is equal to the density of maxima below (—zo) Thus

—z*

&)~ o) =D [ a2t + [ panlez= . (16)
where pp.,(z*) is as given in eqn. (4) Since the integral Of Ppax OVEr (— 00, 00) is
unity, eqns. (12), (15) and (16) may be combined to obtain

dc(z?)‘);Dmax {1_ J ’ pmax(Z*)dZ*_2 joopsp(Z*)dZ*} +dH(Z?)<) » (17)

where p,, is the probability density for heights of saddle points. This equation is
still very general, the only assumptions being those of symmetry about the mean
plane, and of the contact patches being finite. Thus, the preceding equation would
not apply to either asymmetric surfaces or to two-dimensional surfaces, where the
contacts are all of infinite length. It would apply quite generally to all other
surfaces. We now proceed to study isotropic, Gaussian surfaces, with the anti-
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cipation that what is learned about them will apply qualitatively to other surfaces.
By using the techniques of random process theory?, it is shown in Appendix I
that for a Gaussian, isotropic, random surface,

o 1 o \* 2 ‘
Pol) = 5 <ﬁ> exp[—az*?/2(a—1)] . (18

Introducing eqns. (4) and (18) into eqn. (17), we obtain, for isotropic,
Gaussian surfaces,

do(z§) = (2n) " *(0'/0)? z§ exp(—1z52)+dy(z%) . (19)

Since this result is central to the model being developed, discussion of it is
in order. First, if it is known that holes do not occur, then the density of finite
contact patches would be given by the first term on the right of eqn. (19). One
would then conclude that the density depends only on ¢’ (r.m.s. profile slope) and,-
o (rm.s. profile height) and that the density of finite contacts would be zero at
z§=0; contact would occur in one or more unbounded, singly connected patches.
Intuitively one knows this to be unlikely for most surfaces, and it is concluded that
the density of holes is not negligible. It is shown in the following analysis that
the density of holes is negligible only when the surface has a narrow PSD, i.e.,
when only a narrow range of wavelengths is present in the roughness. Such
surfaces are not often found in practice.

If one assumes that dy(z§)=0, then eqn. (19) yields a lower bound for the
density of contacts; not a particularly useful bound in the vicinity of z§=0, but
meant to illustrate the procedure to be used to estimate the density of holes. An
upper bound for the density is obtained by assuming that each maximum above
z§ gives rise to a separate contact:

‘dc (Zg) S Dmax j

Ponas(2)d2* )
Thus d, (z§) is bounded as follows
1 <O” )2 . B . 2 0
Az | Zp €Xp (—52(’; )< dc(zg) < Dmax J pmax(z*)dz* . (21)
(271:) 4 z(";

These bounds are not particularly good and would be improved if one
were to obtain bounds on the density of holes. In general, if one were to obtain
lower and upper bounds dii®(z}) and di®(z}), then d.(z}) would be bounded as
follows:

i (28) < de(28)— (2m) 2 (0'/0)? 2§ exp(—328°) < di®(2%) - (22)

To obtain the bounds on dy, it is necessary to assume that the surface
roughness z(x;, x,) can be written in the form

Z=Zl+22, (23)

where z; has a PSD such that «; ~ 1.5 (i.e., the PSD is approximately a ring, with
only a narrow range of wavelengths) and such that

o> o2, (24)
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. where o, and o, are the r.m.s. values of z; and z,. The partitioning indicated in
eqn. (23) may be done in general when the surface PSD has a dominant annular
ridge at some wavelength. This feature will often be present on surfaces resulting
from some feature of the machining process. It is particularly important that the

_partitioning be done on the basis of the surface PSD and not the profile PSD,
since it has been shown® that the two PSD’s give rise to radically different ideas
of the spectral content of the roughness.

If the partitioning additionally be done in such a way that z; and z, are
uncorrelated®, then the following results obtain:

62 =ol+oixo?

¢? =d'1+0'3 _

i o"*=0?+03% |, - (25)
B ) where the subscripts 1 and 2 refer to the z, and z, components. Since 0, ~ 0, we
also have z§=z,/0xzy/0,=zF. (

Now consider the intersection of the dominant z, component and a plane
at z¥. Since a, ~ 1.5, there are relatively few minima above z§=0 [as can be seen
from eqn. (4), and from the fact that ppi,(2*)= pmax(—25)]- Thus one would expect
relatively few holes to appear in the contact patches. The holes are caused by the
superposed z, roughness and its valleys and the density of holes will depend mainly
on the ratio ¢,/0,. If ¢, is very small compared to g, the perturbation caused
by z, will be negligible. Some holes will nevertheless appear around the contours of
the z,-contact patches. To put this argument on a more quantitative level, consider
the interference between the z¥ plane and the z; roughness, given by

e=12zy(xy, X;)—2Zg . (26)

When the z, roughness is superposed, some of its valleys around the point (x4, Xx3)
will be deeper than e, and will cause holes to appear in the contact patch in which
the point (x;, x,) lies. We now obtain bounds on the density of these holes.

3.2.1. Upper bound on the density of holes
When the z, roughness is superlmposed on the z; roughness, local minima
) appear. If the gradient of z; is Vz;, these minima are caused by those points of

z, where Vz,= —Vz,. These minima will cause holes if z; >z, and if z,<zo—2,,
although it is not clear how many holes will be caused, since each hole may
contain more than one local minimum. However, an upper bound on the density
of holes is obtained by assuming that each local minimum caused by z, gives rise
to a hole if it is deep enough.

Using the techniques of ref. 1, it may be shown that the density of points
on z, satisfying the requirements for a minimum except that

o _ im0l
ox,  0x, 0x,  0x,
is given by

1 :
Di=Dyexp |- 323+ 8| )

G,
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where D2, is the density. of minima of zz,’given by

1 oy \?
Diin = 6n 3% <0_'Z) , (28)
and &,, &; are defined by
& = g—fé > 3= % (29)
Furthermore, the probability density for the heights of these points is simply
p(z2) = Pain(22) » (30)
where p2;.(z,) is the probability density for the heights of true minima of z, given by

piin(zz)=piax(_22)’ ‘ (31)/
Piax being given by eqn. (4). ' '
- In eqns. (27) and (30), the subscript { signifies points with a given gradient
(=(&+E3)h .
The fraction of the mean plane area where z,, £, and {3 lie in the ranges
(z1, 21 +dzy), (&5, Eo+dEy), (&3, E3+dE) respectively is given by!

dA4 = p(z,)p(&2) p(&5)dz, dE,dE, . (32)
An upper bound on the number of holes in d4 is thus given by
di° =D2dA=D2p(z,) (%) p(£:)dz; dE,dey j CALEN (33)

and an upper bound on the total number of holes is obtained by integrating this
expression, letting z; vary over (z,, o0), and &,, &; over (— oo, + o0):

ng(Zo)=Aj'OO ' ﬁw D?P(%)P(fz)l’(fs)dhdfzd‘f3j ) p¢(z)dz, (34)

z1=2zo £2,83= — 0 z=z4z,

Using the following expressions for p(¢,) p(¢,)

1 1
PEIPE) = o e | = o (E+ed)]

1
and introducing eqns. (27), (30) and (31) into Eqn. (33), one obtains

e

wp(z’f)dz’fj CpRaEdz, o (39)

zg oy(z¥ — z§)/o;

&2 (25) = D min (/o) |
where

Z’f:Z1/0’1, 7§ = z/04, 75 =2,/0, . (36)

Note that p(zf) is Gaussian with zero mean and unit standard deviation,
whereas D, and p2,, will depend on o,, ¢, and ¢4, in the manner indicated
in eqns. (4) and (6). Thus, eqn. (28) gives an upper bound on the density of
holes that may be completely determined from the surface PSD.

¢
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3.2.2. Lower bound on the density of holes
A lower bound on the number of holes Ady within an area dA is obtained
by assuming all the holes to be singly connected. This argument is similar to the
one used in obtaining the lower bound in eqn. (21). However, as in eqn. (27), the
densmes of all stationary points of z, are multiplied by the factor exp[—(¢& 2+é§)/
%] due to the local gradient caused by the z,-roughness. The resulting expression is

o PP pEne) (M)

()

AdiP =

1 s e 1{Z1—Z0\°
X exp{ — 752 (£2+53)—7< - ) dz,d¢, déy .
2 .

2

Integrating over z;, £, and &5, one obtains

0 g 216
X eXp {—% [ZTZ + <‘Z—:) (z¥*— *2)}} dz¥ .

If, as has been assumed, o, > g,, and if in addition, ¢, z¥ < o, this reduces to-

aP(et) ~ 5()(—) (22) exp (~4287). | o)

This completes the determmatlon of the bounds on dy(z¥). In summary, the density
of finite contact patches is bounded as in eqn. (22), di® being given by eqn. (35)
and d® by eqn. (37).

Before proceeding to examine the value of the bounds just obtained, we -
consider the implications of the model of the process of contact developed so far.

3.3. Physical interpretation of the surface contact model

When the surface may be partitioned, we know that the density of finite
) contact patches is given by eqn. (19); intuitively we also know that most of the

holes are caused by the z,-roughness. An alternative approach to the one used is

_to argue that singly-connected patches are produced by the z;-roughness. The
" i z,-roughness causes perforations to appear in these patches, but this by itself does
‘not cause the number of contact patches to change. In addition, however, the
z,-roughness causes numerous clusters of microcontacts to appear outside the large
contact patches of the z;-roughness. The density of these microcontacts added to the
density of large contact patches must equal the density of finite contacts, given by
eqn. (19). We now demonstrate by a heuristic argument that this is indeed
approximately true for the model.

Assuming that the z;-roughness causes few holes, the density of large contact
patches (dpcp) is found from eqn. (19) by substituting ¢, for ¢, oy for ¢’, and by
setting dy =0:

dicp(z§) =~ (2n) "% (0 /0)? z§ exp (—32§?). (38)
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Here, it has been assumed (as before) that o, ~a.

Denote by dy the density of small microcontacts caused by the z,-
roughness. Then in an area dA where the separation of the hard flat and the
z,-roughness is (zo—z;), eqn. 19 and the argument of Section 3.2.2. indicate that
the following relation must hold:

o .
A(dy—dy) = W(0'2'/02)217(21)17(52)1’(53) <ZOUZZ >
<op | = g @) — (27 famdeaes.

‘Integrating over z¥, £, and &5, it may be shown that when ¢,< o,, the resulting
expression is

du(z%)— dy(z8) =~ (2r) (0% /0)* (04 /o) z§ exp(—3z82) . (39 )
Finally, the density of finite contacts is

d(z§) = dycp(2§) +dw(z8) .

= (2n)"*(0' /o) z§ exp (—328) + du(z0) (40)
which, upon using eqns. (39) and (25), reduces to eqn. (19) except for the term:
—(2n)"%(0'/0)*(0%/0')? 2§ exp(—zE?/2); this term, however, is never more than
one-fourth of the first term in eqn. (19), and the error in the heuristic approach is
small. (The error arises because of the assumption that eqn. (15) applies locally
to the z,-roughness superimposed on the z; roughness. Equation (15) does not
hold exactly because the local roughness is inhomogeneous.) This constitutes a
verification of the claim that large contact patches are produced by the z,-roughness,
small microcontacts and holes being produced by the z,-roughness.

The following approximate picture of the process of contact results. Large
contact patches, whose density is given by eqn. (38), appear. They are perforated
by holes and surrounded by clusters of small microcontacts, the densities of these
satisfying eqn. (39). In particular, the density of holes is bounded by dp® and
di?, given by eqns. (35) and (37). These holes and miicrocontacts appear in the
main near the peripheries of the large contact patches. However, holes may also
appear near the middle of a patch, if the patch appears on a z; peak of large )
radius, and the interference there is small. '

If the area of the microcontact clusters resulting from the z, roughness is
small compared to the area of the main contact patches, one would conclude that
the density of finite contacts given by eqn. (19) would be misleading to a certain
extent. Now the overall real area of contact A is given by eqn. (7). On the other
hand, the area of the holes caused by the z,-roughness (or the microcontacts) is
approximately given by

@ —(a1/02) (zf—z§)
4= | plenazt | plep)dzs @)
Since both p(zf) and p(z%) are Gaussian,
(02/04)

A, & P (—1z%%). (42)
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Finally, the area of the large contact patches (eicluding the holes) is approximately
ALCP=A_A2=A(1_A2/A)‘ (43)
The ratio of 4, to 4 is

ﬁ _ 20,/0, eXp(—%Z?)‘Z) (44)
A n erfe(z§/2%)

When ZO—O A,/A=(0,/no,)< 1. When z§—+00, A,/A—(2/n)* x(0,/0,28)< 1.
When z§— — co, AZ/A—>(02/21wl)exp[ (%)z&?]< 1. Thus, for a surface that may be
partitioned, the hole area is always small compared to the area of the main
contact patches
It is also instructive to compare the mean areas of the large contact
patches and of the z,-microcontacts. Designating the mean area by a, we have, for
,"> the large patches,

A 2n)? 2 )
a; = _Ler (27) <§> erfc (z§/2%) exp (3z%2) . (45)

density 2z} 1

On the other hand, an upper bound on a, is obtained by assuming the
- density of z,-microcontacts (or holes) to be equal to dii®. Thus, from eqns. (37) and
(42),

a,<m(o,/0h)*(0'/oh)* . (46)
Comparing a, and a,, we find

= 2 3 2 /N 2 ’ o\ 2 R :

c‘z_»: > % (%) (:_—i) (%) erfc (z§/2%) exp (3z&?). 47)

As z§—0, it may be seen that a, >a,. This is in part due to the fact that the
density of large patches—0, and their mean area—o0. As z§— 00, eqn. (47) results in

T 2 (Y () (2. ()
a, z¥*\o, o} g

It appears, therefore, that at large separations, it is not possible to conclude in

) general that the holes or microcontacts due to the z,-roughness are of small size

 compared to the z;-patches. However, when the surface roughness is such that
o,=0(o}), then a, > a,.

One might conclude on the basis of the preceding analysis that for surfaces
that may be partitioned, the holes or microcontacts resulting from the z,-roughness
are unimportant from the viewpoint of either load-bearing or electrical/thermal
contact conductance problems. However, they may be significant in problems
involving the frequency of asperity collisions (wear, fatigue) or lubrication, the holes

_providing traps for the lubricant. This latter possibility was communicated by
Dr. Tibor Tallian of SKF Industries as a possible explanation for the static load-
bearing capacity of lubricant films. Further insight into the lubrication problem at

_ small separations (high pressures) is gained by noting that even though the area of the
holes is small, the contact patches tend to be very elongated and of complex
shape, making it difficult for the lubricant trapped in the open spaces to flow out.
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Discussion of partitionable surfaces yields some insight into the contact of
surfaces that may not be so partitioned. We may still write z=z; +z, with
a; ~ 1.5, but it may no longer be assumed that ¢,< ¢, (or that ¢; ~¢). One may
to a certain extent consider surfaces that may be partitioned, and then let the
ratio(o,/0,)increase. Clearly, the area of the holes and of the z, microcontacts, as well
as their density, will increase. Moreover, the holes will begin to have islands of
contact within them, and so on. Eventually, as one approaches a truly broadband
surface, it will no longer be permissible to think in terms of isolated, singly-
connected microcontacts, even at large separations. The real area of contact will
look like pieces of Swiss cheese. One may put these ideas in terms of level-
crossings of a profile of the surface. For large z§, the length of the dwells below

* has a large mean value® It is usually thought that these dwells correspond to
areas of no contact on the surface between contact patches. This interpretation
is correct for narrow-band or partitionable surfaces. However, for surfaces with a .
flat PSD, these dwells may equally well correspond to spaces of no contact within
contact patches. It is then no longer permissible to think in terms of unit events
such as asperity contacts and collisions, and a new model of contact needs to be
developed. We do not, in this paper, attempt to develop such a model. Instead, we
confine attention in the remainder of this paper to narrow-band and partitionable

surfaces.
First, an analys1s of the bounds on the density of holes obtained in Sectlons

2.2.1. and 2.2.2.

3.4. Analysis of the bounds
We now exclusively consider surfaces that may be partitioned, narrow- -band

surfaces obviously falling into this category. In order to make the following
discussion of the bounds on the density of microcontacts explicit, we consider two
limiting cases: (a) when z, is broad-band (i.e., a,>1.5), and (b) when z, is also
narrow-band (i.e., oy~ 1.5).

(a) z, is broad-band, i.e., 0, > 1.5

In this case, p2,.(z%) in eqn. (35) is found from eqn. (4) to be approximately
Gaussian:

PRan(23) = (2m)* exp(— 227 (49)

Introducing this into eqn. (35), and again requiring ¢,z§ < o, the following bound
is obtained: ,

* UB (% Drznax ‘ O-/2 2 %2
dy(z8) < dy°(z8) = o <01> P exp (—32§7) . (50)
Now D2, is found from Eqn. (6) to be
p2 | (?_z_ ’ 51
max ~ 67'[ . 3% 2 . . ( )

Combining eqns. (22), (49) and (50), we obtain the following upper bound on the
density of finite contacts:
d.(z%)< dB(z%) =(2n) "% (0'/0)? 2§ exp(—328%)+
(1233%”2) Y(a3/0")(02/01) exp(—32§7) - - (52)
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The lower bound is obtained by combining eqns. (22) and (37):
do(z8) 2 ds®(28) = (2m) "% (0'/0)* 2§ exp(—2287)+
(2m)72(03/02)*(02/01)(0%/0")* exp(—328?) . (53)
To evaluate these bounds, we first compare the two terms within each
bound, and then compare the two bounds. The ratio of the two terms in eqn. (52) is

R= second term _ o (a_%’/)z (2> (54)

first term 3(6n)izE \o o,

For small values of z% R is very large. This indicates the likelihood that the
density of holes (second term) approximately equals the density of finite contact
patches. Moreover, the analysis of Section 3.3, indicates that for small z§ the finite

_ contact patches are almost all due to the z,-roughness, the large contact patches
" )due to the z;-roughness no longer being bounded in size. For z§—o0, R—0. To
.~ determine when the density of holes is negligible, we require R<0.1, and obtain

2§ 20.770(0,/0,)(0%/0")* . (55)

Above this value of z¥, the effect of the z,-roughness is negligible; below it, the
presence of the holes and z,-microcontacts begins to be important.
The ratio of the two terms in eqn. (53) is

second term 1 a\ [d5\?* [0,
_ _ (2N () (22, (56)
first term zE(2n)* \oy ) \o g4
Again, according to the lower bound, the density of holes equals the density of

finite contacts as z%—0. As z%— o0, the density of holes again becomes negligible.
0 =0.1 when

s<(2) (5 (5 7

Comparing eqns. (55) and (57), we may say with certainty for z§ > 0.77x

(0,/0)(0%/a”)?, the density of holes is less than 109, of the density of finite contacts;

) for z& < 4(0,/0)(a/o,)(a%/0"")? the density of holes is more than 10%. There is a

 shadow zone between these two values of z§ where little is known. When a, %5,

the two bounds coincide. The entire analysis is therefore not applicable for o, < 5.

(It was originally assumed that o, was sufficiently large as to give a Gaussian
DP2ax With zero mean, say o, > 20.)

Finally, we compare the two bounds themselves. From eqns. (52) and (53),

dP(E) _ 25+0077(05/0"F (0/0) )
dB(z5)  z5+0.4(x/ay)(05/0") (02/0,)

First, we must have S >1. This leads to «, 25, as was previously noted.
To determine when the bounds are close, we require S < 1.1. This condition certainly
prevails if :

25 >0.770(0, /0, )(1—5.7/0,)(a%/6")* . (59)

S
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When- o, is very large, this reduces to eqn. (55), which is the constraint for the
density of holes to be certainly negligible, in which case the closeness of the
bounds is not surprising. For a certain range of values of a,, however, eqn. (59)
indicates that the bounds will be close even though the density of holes is not
negligible.

When z§=0, eqn. (58) becomes

§$=01920,, z§=0:

If «, > 1.5, the bounds at z§ =0 give little information, since they differ by a
large factor. Some information may nevertheless be obtained by comparing the
upper bound with the density of contact patches that would be predicted by an

independent-asperity model. According to the latter, the density of contacts, denoted
by d*5F, would be

chSP(Zg=O)=DmaX jm pmax(z*)dZ* 2% Dmax > l (60) ’
0

where D, is the density of maxima, given by eqn. (6). Combining eqns. (52) and
(60), we obtain

UB 3 11\ 2 »
4°0) 33 <ﬁ> (52—) <1. (61
o

a2 (0) = ma, \ o)

Thus, the density of finite contacts is definitely smaller than the den81ty
predicted by the asperity model, and by quite a large factor.

(b) z, is narrow-band, i.e., 0, ~1.5
In this case, p2,,(z%) may be shown from eqn. (4) to be
(6/m)* exp(—325%)[z5° — 1 +exp(—2z3%)], z5>0
Pmax(23) =
0, z3<O0. » (62)
Proceeding as in the preceding case, the following approximate upper bound results:
d(28)< dJ%(2§) = (2m) "3 (0'/0)* 2§ exp(—328%) +
(5/36n%)(a4/0)(03/0") exp(—3257) - (63)
The lower bound remains the same as in eqn. (53). ’
The ratio of the terms in eqn. (63) is

secondterm 5 (2\* /o,\ [o%)\?
= = —= . 64
R first term 18z% <ﬁ * <a> (a") (64)
To determine when the density of holes is less than one-tenth of the density
of large contact patches, we require R < 0.1, and find that this occurs if

z§ =>2.770(a,/0)(05/a")* . | (65)

From the lower bound analysis in case (a), we observe that the density of
holes is greater than one-tenth of the density of large contact patches when z§
satisfies eqn. (57). The constraint on z§ becomes
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A<alom) ooy . (66)

The region of uncertainty between the two values of z§ given by eqns. (65)
and (66) is now quite small, since o, ~ 1.5.
Finally, the ratio of the upper and lower bounds in this case is

dP(z§) 2§ +0277a(0,/0)(0s /a")? (67)
AP (z8) 25 +04(w/on)(05/0)(0%5/0")
This ratio is always greater than unity, and the analysis is therefore

applicable in all cases. The bounds are within 109, of each other when S<1.1,
leading to

S=

2% 22.770(0,/0)(05 /o) (1—1.59/a,) . (68)
; 7 The ratio has its maximum value at z§ =0, where S=0.69a,. Thus the bounds
are fairly close for all z§. For a,=1.5; the bounds are certainly within 10% of

each other for z§ >0.

(c) The general case

An examination of eqns. (55) and (65) indicates that the density of holes is
likely to be less than 10% of the density of large contact patches (caused by the
z,-roughness) when

z§ >ma(a,/0)(03/0")?
where m varies from 0.77 when z, is broad-band to 2.77 when z, is narrow-band.

The density of holes is certainly greater than 109 of the density of large contact
patches when

z§ <4(a/ay)(a,/0)(03/0")? .
- Finally, the two bounds will be within 10% of each other if

2§ 2 pa(0,/01)(05/0")*(1—gq/a,),

- where p and ¢ vary from p=0.77, ¢=5.7 when o, > 1 to p=2.79, q= 1.59 when
a,~ 1.5,

3.5. The shape of the large contact patches

Some idea of the shape of the large contact patches may be gained by the
use of a dimensionless shape factor, which allows a comparison of the contact
patches with ellipses (or circles). The reason for choosing ellipses for comparison
is that the -contact patch on an asperity can be assumed to be roughly elliptic
for small values of interference. The purpose of the following analysis is to evaluate
this assumption for large values of interference.

The shape factor for a homogeneous array of closed curves is defined here by

F=4ndd/*, (69)

where A is the area enclosed (per unit mean plane area), d the density of closed
curves ( # /unit area) and [ the length of the curves per unit area.
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To determine the value of the shape factor for an array of ellipses in a
reasonably simple manner, it is necessary to assume that they all have the same
eccentricity e. Let a be the semimajor axis with probability density p(a), mean m,,
and variance about the mean ¢2. Then it may be shown that

RO = or KJ—) #1f. 70

where K(e) is the complete elliptic integral of the first kind.
A lower bound on F; is obtained by setting g,=0, i.e, by taking all the
ellipses to be of the same size:

n? (1—e?)*

Folo)2 FE6) = T (g

(71)

ELLIPSE ECCENTRICITY, e
1072 107!

1.2 T T TTTTT T T T T T T T T

TFLB(ELLIPSE)

SHAPE FACTOR, F

0.4

0.2 T

0 1 1 Lol 11l 1 1 1oL L i1y 1 1 Lol
1073 1072 107! * 1
DIMENSIONLESS NORMAL PRESSURE (p”=p/H)

Fig. 7. Shape factor for an array of similar ellipses; upper bound on the shape factor of the large
contact patches.

This lower bound is shown in Fig. 7. For e=0, i.e., for an array of identical -

circles, FE® (e=0)=1. One may now evaluate the shape factor for the true contact
patches and compare it with F5B. If Fiop< 1, it is immediately clear that not all
the contact patches are circular. For a given value of eccentricity, e=e,, if
Ficp < FEB(ey), it is similarly clear that at least some of the large contact patches
must be more elongated than ellipses with eccentricity e,. Unfortunately, the shape
factor does not contain too much information beyond this. It does not indicate,
for example, the possible variations in the eccentricity e. Furthermore, it must be
remembered that the preceding comparison is artificial to the extent that it assumes
the contact patches to be roughly elliptic. They are likely to be quite irregular
and non-convex, particularly at small separations, as shown by the gap maps of
Williamson!©

To determine Fjcp, one needs to know [ cp, the length of the outer
boundaries of the large contact patches. This may be approximately determined
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as follows. Corrsin'? and Longuet-Higgins? have shown that the total length of the
contours at z§ per unit mean-plane area for an isotropic Gaussian surface is

I=1%(0'/o) exp(—328?) . (72)

If one assumes that the boundaries of the small microcontacts and holes
do not intersect the boundaries of the contact patches caused by the z;-roughness,
then eqn. (72) may be applied to z; to obtain

lce ~ 5(01/01) exp( —3787). (73)

Now the analysis of Section 3.3. indicates that the area of the large contact patches
is

Apcp r5erfe(z§/2%). o (74)
Combining eqns. (38), (69), (73) and (74), one obtains v
Fiop = (8/m)* 2§ exfe(z5/2*) exp(325?) | | (75)

The small microcontacts and holes and the large contact patches will
intersect to a degree. This has two effects: first, some holes and microcontacts will
vanish, implying that our estimates are too high; and second, the large contact
patches will have sinuous boundaries, with a total length somewhat larger than
that given by eqn. (14). Thus the shape factor in eqn. (75) is an upper bound on the
true shape factor which is shown in Fig. 7. It may also be interpreted as the
shape factor for smoothed large contact patches.

One can qualitatively assess the sinuousness of the large contact patches as
follows. The total length of all contour lines is given by eqn. (72). The length of
the boundaries of the small microcontacts and holes is [,=1 —ILCP.\ According to
the preceding argument, the expression in eqn. (73) is a lower bound on I cp.
Thus, since 0, ~ 0,

I, < 3[(0"—01)/0] exp(—3287). (76)

An alternative procedure for calculating I, is as follows: assume that /; and
I, do not intersect. Upon applying eqn. (72) to the z,-roughness over a small area
dA where the separation is (zo—z,) and then integrating over z,—a procedure
similar to that used in Section 3.2.1. and 3.2.2.—we find

L = $(0/0) exp(—325?). (77)
There is obviously a discrepancy between eqns. (77) and (76). Since

2 "_ﬂi >1,

0 —0, ‘0-2

I, in eqn. (77) is always larger than the upper bound in eqn. (76). The greater
the discrepancy, the more sinuous do we expect the boundaries of the large contact
patches to be. The discrepancy is large when o)< o, and small when ¢, > of.
The reason for this is that when ¢ < o}, holes (and small microcontacts) will
tend to form only around the boundaries of the large contact patches, with a greater
chance of intersection. When o) >0}, on the other hand, holes can form well
within the large contact patches, with a decreased likelihood of intersection.
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4. EXAMPLE

To illuminate the preceding somewhat abstract discussion, we now consider
~ a simple example of an isotropic, Gaussian surface. This example does not
necessarily have a counterpart in nature, and is meant merely as an illustration. ‘
Let the profile spectrum on some arbitrary scale of height and wavenumber
k be given by
¢22(k) = %Ikl CXP( —%kz) . ) (78)
For this spectrum,
6?=1, ¢*=125, ¢'?=375, a=24.

One could presumably assume the density of holes to be negligible, since a

is near 1.5. Instead, consider components z, and z, with spectra /) ’
. (k). K<k | -
D, (k) = { (79)
0, |k| > kg
and
D,,.,(k) = @..(k)— ®,,.,(k) . (80)
Straightforward computations show that '
¢ =1-E,
0% =125 (1-ERFC)—kyE ,
0;?=13.75 (1-ERFC)— ko E(3+k3), (81)
where - ) ’
E=exp(—3%ki), ERFC =erfc(kq/2?%). (82)
Then
o =E,
% = 1.25ERFC +k,E ,
0%5?=375ERFC+k,E(3+k3). (83)

We now require o; ~ 100, in order to ensure a good partition. This leads to )
ko~3.3; with this value, eqns. (84) and (86) become

62=099, o2=122, o{*=347, (= 23)
and
63=001, ¢7=003, o5>2=028, (2 =3.1).

Although one could obtain the necessary bounds by using the correct
expression for p2,, with o, =3.1, we assume that z, is approximately narrow-band.
The following results may then be obtained from the analysis of Section 3.

‘ (1) The density of holes is less than 10% of the density of large contact
patches if z§ >0.05.

(2) The density of holes is more than 10% of the density of large contact
patches if z§ < 0.023.
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(3) If z§ > 0.025, the density of finite contacts is within 109 of the following
value:

d.(z%) = 0.08z% exp(—1z&?).

(4) The shape factor for the (smoothed) large contact patches is
Fycp = 1.63z% erfc(z§/2%) exp(—3z82) . |

(5) The mean area of the large contact patches is

a, = 6.45 erfc(z§/2%) exp(—325%/2%)< 645.

(6) The mean area of the small microcontacts (or holes) is bounded as
follows: :

163<a,<4L6.

This last result is surprising, since it indicates that though the holes and
microcontacts are few in number, they are on the average quite large. This result
is somewhat analogous to that for a sinusoidal surface; if the surface is stretched
in the mean plane without a change in the vertical scale, the density of contacts
decreases to zero while the average size of the contacts increases indefinitely. Thus,
the present analysis may indicate that a,—oco as z,—0: this is because the limit
of a perfectly smooth surface may be approached in many ways. If ¢5,—0 faster
than o', the average contact size at a given separation will increase indefinitely.

In this example, the density of holes is probably underestimated somewhat at
low values of z%; this is because z; is not truly narrow-band. For oy =2.3, eqn. (4)
indicates® that there will be a significant number of minima of z; up to z§~0.5.
Thus the assumption that no holes are caused by z, is likely to lead to error
for z£<0.5. If the partitioning be done in such a way that o, is closer to 1.5,
(0,/01) becomes larger. In this case, an examination of the integrals appearing
in eqn. (35) and in the expression leading to eqn. (37) indicate that our expressions
for both the upper and lower bounds (Section 3.4) will be too high.

Thus, if we let k,=2.4 in eqn. (79), we find 67=0.962, o?=1.14, 07>=2.89,
a;~2; 03=0038, 67=0.11, ¢5°>=0.86, a,~2.7, and ¢,/5,=5. In this case, the
density of holes is predicted to be less than 10% of the density of large contact
patches for z§ >0.03, using the approximate expression for the upper bound in
eqn. (63). The error in the predicted density of holes due to z, will tend to
counteract the assumption that no holes are produced by z;. The closeness of the
constraint on z§ for the number of holes to be negligible obtained with two
different partitions indicates that for the spectrum of eqn. (80), one may for usual
loads neglect the occurrence of holes.

5. DISCUSSION

It has been shown that a fairly rigorous and detailed analysis of plastic
contact may be made for surfaces satisfying the following requirements:

(1) The surface is Gaussian. This implies that the joint probability density
of the height, the two first derivatives and the three second derivatives is
Gaussian; it also implies that the surface is symmetric about its mean plane.
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(2) The surface is isotropic.

(3) The surface PSD is such that the roughness may be partitioned into

. two components z; and z, such that z, is narrow-band and ¢f > o3.

For such surfaces, useful results are derived in Section 3 for bounds on the
densities, mean areas and shape factors of large finite contacts, small microcontacts
and holes (craters) at a given separation or equivalently, at a given pressure/
hardness ratio.

What of surfaces that do not satisfy the preceding requirements? If the surface
is neither isotropic nor Gaussian it is possible, in principle, to make an analysis
similar to the present one, if the height distributions and densities of stationary
points are somehow obtained—implying a detailed experimental study of each
surface. With sucha study, however, it would be feasible to generate contour maps of
the surface and analyze the process of contact numerically the point of an

analysis such as that presented in this paper being that it requ1res empirical inputs that

are relatively easy to obtain.
‘ If the surface is Gaussian but anisotropic, the present analysis can be
duplicated. The statistics of stationary points can be obtained from the surface
PSD, or alternatively, from a few proﬁle PSD’s. This has not been attempted as
yet, but is certainly practical.

One may qualitatively assess the effects of anisotropy by comparing the
statistics of the intersection of an isotropic (two-dimensional) Gaussian surface with
an imaginary plane with those for a one-dimensional Gaussian surface. For the
latter, the contact patches are all of infinite length. Their density is given by?

d(z§) = 2n"'(o'/o) exp(—32§7) -
Denoting the density of finite contacts for the (partitionable) isotropic surface by
d?(z), we have, for large z§,

d(z§) ~ (2n)~*(0'/0) z§ exp(—3z8?).
Suppose we compare two surfaces with equal ¢ and ¢’. Then

(d::)z _ (275)% exp (_%Zg 2) .

2 T %2
d: z§

Evidently, the one-dimensional surface has far fewer contact patches than the
isotropic surface. Thus, one could argue that the effects of increasing anisotropy
are (a) to elongate the contact patches, and (b) to cause contact patches to
coalesce and decrease in number.

It is pointless to guess at the effects of the departure from Gaussian-ness:
these could be extremely varied; at the very least, contact statistics may be expected
to depend on parameters other than o, ¢’ and ¢”. Instead, we briefly consider
the third requirement above, that of partitionability. ‘

It might appear at first sight that this is a stringent requirement, since it
requires the roughness to have a dominant narrow-band component. However,
narrowness of the surface spectrum does not imply a profile spectrum that looks
narrow band. For example, if the surface spectrum is a ring delta-function:

O, (ky ko) =(2m) " O(k—ko),  k=(k3+k3)E,

)

27
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the corresponding profile spectrum is -
k=KD TR, Jkl<ko .
&, (k;) = _ . 0
0, kq| >ko -

This is a spectum that has an (integrable) singularity at k,=ko; more
important, however, is the fact that the spectrum is fairly flat at low values of
k,. For example, ®(ko/2)~ 1.16(0), P(3ko/4)~ 1.5 @(0). Thus a spectrum that is
fairly flat at low wavenumbers (long wavelengths), has a peak at some wave-

number, and then decays rapidly may be considered to be narrow-band. An example
of this kind of spectrum is , : P .

@, (ky) = |kl exp(—k*/2)

__discussed in Section 4. For this spectrum, a=24. A maximum occurs at k=1, where
-/ ®,=0303. The half-power bandwidth is Akz 1.6, the half-power points being

k=03, 1.9. .
Alternatively, a band-limited spectrum of the form

L [kI<ko
¢p(k1) =

0, [kl>ko

has «=1.8. This again represents an approximateiy narrow-band surface.
‘Finally, consider a profile spectrum of the form

®,(ky)=(1+ki")~",  n:integer.
From the definitions of o2, 62, ¢"'2, it i possible to show that

2, _ (=) o _ _ (/) 2 (m/n)

%

7= sin (r/2n) ’ 7 T sin (3n/2n)” (JI ~ sin(5n/2n)
These hold when n >0, n>1 and n > 2 respectively. We assume n >3.
From the definition of «, we find
. . 1—cos (3n/n)
) "~ cos(2n/n) —cos (3n/n)

The following values of « are obtained:

no3 45 6
o 4.00 241 212 2

Furthermore, as n— o0, a— 1.8, decreasing monotonically from n=3. A profile
with this spectrum represents an approximately narrow-band surface, if n >4.
Thus, if a profile spectrum can be approximated in a band that contributes
7 significantly to the mean-square level by one of the above spectra (or by a variety
' of others), it may be partitioned.
On the other hand, if the surface spectrum is clearly not partitionable in




330 ) P. R. NAYAK

the necessary manner, the argument of ‘Section 3.3 indicates that conventional
descriptions of contact—involving encounters between clearly defined asperities—
may not be applicable. In the face of a considerable lack of experimental data
on what such surfaces look like, it appears fruitless to speculate on what new
descriptions and concepts might emerge.

In conclusion comments on some other assumptions underlying the theory
and on comparisons with experimental data are presented.

A major assumption in the theory is that the entire contacting area is
plastically deformed and moreover, that this plastic deformation occurs in the
manner postulated by Pullen and Williamson® and summarized in Section 2. The
important ingredient of the Pullen/Williamson model is that the statistics of contact
are the same as those for the intersection of the undeformed rough surface and
- animaginary plane. Of secondary importance is their observation that the pressure/

hardness ratio p* is related to the fractional area in contact 4 by p*=A/1— A). .
Other relations could be used, since they are merely used to calculate the pressure at

a given separation and do not enter into the analysis of contact statistics.

It is possible to develop a heuristic constraint ensuring that most of the
surface does deform plastlcally It has been shown in Section 3 that for partltlonable
surfaces most of the area in contact is due to the z;-roughness and it is possible
to demonstrate that at separations z§ > 1, the asperities are more-or-less in-
dependent (i.e., nonintersecting). Suppose one assumes that this is so; then the
density of large contact patches must equal the density of summits lying above z:

dicp(28) = j *P:mx(z?)‘)dz* .

Upon introducing eqn. (g) into this equation, we obtain
—3s ¥
dicp(28) = (21) "3 (01 /0) 2§ exp(—3282)
x {1+(m/6)* exp(4z§?) erfc (2% 3%},

a result which differs from eqn. (38) by less than about 10% if z% >1, thereby
proving the hypothesis of independent asperities.
Now consider an asperity with a summit height z*. It will deform plastically
if* '

z*—z§ >(R/o)(H/E), (84)
where R is the inverse of the mean curvature at the summit, H is the hardness
of the asperity, and E’ is defined by

11— 142
; + ,
E - E E,

E;, E; and vy, v, being the Young’s moduli and Poisson’s ratios for the two
“surfaces.

It is further possible to show (by an examination of the joint-probability
density of summit height and mean curvature') that when «, = 1.5, R is given by

R=(3)*(o32%) (85)

e

"
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for all asperities with height z*; the distribution of curvature for summits of a
given height being extremely narrow. -

Upon combining eqns. (84) and (85) [and noting that oo’ ~3*(s%)?], we find
that for a given separation z¥, those asperities will deform plastically whose
height z* satisfies the following inequality:

z* 252§+ {28+ 4(H/E'0')*}*] . (86)

It follows that almost all asperities in contact will deform plastically if 2(H/E's})
< z§. If we require that

E'¢i/H >5, (87)
then inequality (86) becomes
7* > z5(140.04/25)~ 25 if 25 > 1.

Thus if inequality (87) is satisfied, and if z§ >1, then the assumption that
most of the surface deforms plastically is justified. The constraint on ¢}, namely

oy 25(H/E'),

does not involve the mean summit radius, as does Greenwood and Williamson’s
plasticity index? !, although both involve the ratio (H/E’). The criterion developed
is reducible to that proposed by Halliday'2, but the criterion involves the r.m.s.
profile slope of the z;-roughness, and not of the entire z-roughness. |

Comparisons of the theory with experimental data appear difficult since there
appear to be no studies reporting both densities of contacts and profile spectra.
Qualitatively, however, some similarities and some differences are found in a
comparison with the data of Uppal, Probert and Thomas'®. They report, for
example, that except at the highest loads, most contacts are noncircular; they
demonstrate the coalescence of contacts, as well as the presence of holes in the
large contact patches. Further, they find that the density of contacts has a maximum
at some separation. This is predicted by theory; for the results of Section 3
indicate the density of contacts probably satisfies a relation of the form

d,(z8) oc exp(—328)(z5+C),

where C is a constant that is usually small compared to one. It is then easy to
demonstrate that d.(z§) has a maximum at

z¥=3[(4+c?)EF—c]< 1.

Hére, a significant difference between theory and experiment is found, for
the data of Uppal et al. suggest that the maximum occurs at a value of z§ >1.
No reasons for this discrepancy are known at present.

APPENDIX I

THE PROBABILITY DENSITY FOR HEIGHTS OF SADDLE POINTS

Let z(x,, x,) be the height of the surface. Define

z*=z/o,
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B[, (%2 &7\ %z ?z 0%z
tis byt =—l(——— 1, 3 lz==—=5 . A.l %
[ 1502 3] "’ [2 ax% + 0)/'%) axl axz (ax% ax§>:, ( ) "
It is shown in ref. 1 that at stationary points, where 8z/0x;=0z/0x,=0,
the joint-probability function for z*, ¢, ¢, and t5 is given by

N

C% 0_// O', 2
E Psta(z*’ t19 t29 t?) = %)— eXp(_—cl 6*2) |t%_t§_t§|
x exp[—3(C, i+ 53+ 3+Cyt,E%)], A2)
where ‘
Cy=0/20—3), C,=C(12/x)*. (A3)
Saddle-points are defined by
<t <0, G521, , (A4) ’)
Thus, -

P

sp

» C% 1N 2
0) = 50 (o) ew [-CE—HCa+ G xT, (A3

where
I= H |- —d3|exp. [—1(t3 +13)]dt,dts .
t3+13 =12

The integral I is found to be equal to 4n exp(—t{/2), and by integrating eqn.
(A.5) over t,, we obtain [after using eqn. (A.3)]

-

a

2 a \ % (c"/d')? [ af*? J
*) = 5 - - A.6
Py (%) 3x3% (cx—l) (2n)? cxp 2(x—1) (A.6)
The density of saddle-points is obtained by integrating eqn. (A.6):
* 2 1 ! ’
Do = | Pylede =g @ (A7)

Comparing eqn. (A.7) with eqn. (6), we find that eqn. (12) is confirmed:

Dy, = 2D, . ‘)
Finally, the probability density for heights of saddle-points is found by dividing \
P, (z*) by Dy,:

e 4 o \ % océ*z :
Py (%) = (27) (ﬁ) exp [— m} , (A.8)
which is eqn. (21). <
%
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